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1. Introduction

This note contains the performance analysis of a prototype packet-radio pacing algorithm de-
signed to prevent congestion by throttling traffic sources. In the pacing algorithm we analyze,
each packet radio measures data-packet forwarding times on a neighbor-by-neighbor basis, and
scales them to compute a lower bound on packet inter-transmission times, known as a pacing
delay[t]. The scale factor is chosen to prevent packet radios from sending data packets to their
neighbors faster than they can forward them. I[n summary, the pacing algonithm applies flow
control to prevent congestion.

The prototype algorithm differentiates between packet transmissions at the head of a route
and packet transmissions along a route. The pacing delays for the former case are scaled
quadratcally whereas the pacing delays for the latter case are scaled linearly. The objective is
to prevent congestion by metering data packets into the network slower than they can traverse
it. This source-throttling technique is called quadratic backoff.

We derive a mathematical model for pacing-delay computations in a packet-radio network
that demonstrates quadratic backoff introduces unfair stable equilibrium points. In other words,
quadratic backoff causes a persistent situation to occur in which some routes get more bandwidth
that others. — N e

Quadratic backoff was considered for SURAP as a congestion-avoidance mechanism, but was
eliminiated due to performance problems. Recent versions of SURAP employ the linear-backoff
pacing algorithm at the head of a route as well as along a route.
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2. Simulation Results

Figure 2.1: Sample Network

Our model of pacing was motivated by the simuladon of the network of Figure 2.1. In this
network:

l. A sends to D at maximum rate.

~

. E send to H at maximum rate.

3. G crashes halfway through the simulation.
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Figure 2.2: Throughput
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Figure 2.2 compares the throughputs of the two paths after G crashes. Initially, A -~ B’s
traffic share switches between nearly-exact integer multiples of the E ~~ H’s share. Furthermore,
each integer-multiple share-allocation is maintained for several seconds with very few fluctua-
tions. This happens until 120 seconds have elapsed; then, the E ~- H path stabilizes at a traffic
share that is twice the share of the A ~» B path.

For this network, once G crashes there are two routing alternatives for the E ~+ H path: E
may route either through A or through F. These choices are illustrated in figure 2: the dotted
line illustrates the path through A while the dashed line illustrates the path through E. On closer
examination of the simulation we observed that E routes through A fur die first 120 seconds
and that E routes through F afterwards.

Figure 2.3: Route alternatives

We now investigate these two cases:

2.1 E routes through F

Here, A and F both forward packets to B. Because B is the bottleneck, the throughput of each
path is determined by node A’s and node F’s pacing value to node B. F will get a much higher
traffic share because its pacing is equal to 3D (linear -ack<ff) where D is a smoothed average of
the time for B to forward packets. However, A’s pacis:.- ~ equal to M x D (quadratic backoff)
where [2]: 3 '
.\«[—3+-2-BD 2.1
Faimess queueing helps alleviate this situation. Faimess queueing (1], is a FIFO queuing
discipline, with additional stipulations that give queueing priority to infrequent senders: this
prevents nodes from hogging the resources of a neighbor. With faimess queueing, B gives trans-
mission preference to packets from A. But this will not eliminate the unfaimess; our simulations

give the E ~- H path twice the traffic share of the A ~~ D path.

2.2 E routes through A
In this case, the A ~» D path usually maintains a much higher traffic share than the E ~- H path.

The traffic share for the A ~» D path is based on the pacing from A to B, which, in tum, is
based on B’s forwarding delay. The forwarding delay is very small because B does nothing but

3
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forward A’s packets. However. the traffic share for the E --- H path is much smaller because it
is based on the delay from E to A. This is larger than the delay from A to B because A forwards
its own packets as well as E’s packets.
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3. Model

We now develop a model of pacing when E routes through A. We use the model to show that
the A ~- D traffic share has several equilibrium values that are integer multiple of the traffic
share ot the E ~.- H traffic share.

3.1 Sample Unfair Allocations

Before developing the pacing model, we first give a few examples of E - - H pacing versus
A -~ D pacing. These examples illustrate situations where the A ~- D path can maintain a
traffic share that is much larger than the E ~» H path.

To evaluate the pacing delays, we first evaluate forwarding delays. In our simulation the
smallest possible measured forwarding delay is 20 msec. This is determined by the packet sizes
and the simulated processing times. This is almost always the forwarding delay that A measures
to B, since B forwards only node A’s packets.

Therefore, given:

Pacing = 4 3D+ 35 D? for source traffic 3.1)
9 = 13D for intermediate traffic '
D = 20 msec
We obtain:
Pacing(A ~ D)at A = 84.4 msec (3.2)
Pacing(E ~ H) at A = 60 msec (3.3)

The forwarding delay that E measures to A is the sum of two values:

FWD: The portion of the forwarding time spent processing and transmitting the packet. There-
fore, FWD is the smallest possible forwarding delay that E can measure to A: 20 msec.

W: The amount of time that the packet waits at A to be transmitted due to pacing. Note that W
cannot exceed the E ~- H pacing delay at A of 60 msec because faimess queueing insures
that A will forward E's packet before sending any additional packets originating at A.

We now consider the pacing delay at E for the E ~- H path. The following table illustrates
some sample pacing delays for the E ~- H path for some values of W:

5
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L4 | Pacing

0 msec | 84.4 msec
30 msec | 302 msec
60 msec | 630 msec

These delays show that the throughput on the E ~ H path can be considerably less than the
throughput on the A ~+ D path. For example, when W is 30 msec, the A ~- D path has about
three times the throughput as the E ~- H path.

Nonetheless, the vaniable W is not uniformly distributed between 0 and 60 msec. The next
section presents a dynamic model where we solve for equilibrium values of W.

3.2 Equilibrium

After some time, the network dynamics may reach equilibnum. If this occurs, we are interested
in evaluating the possible equlilibrium solutions. Before describing these solutions, we first give
definitions.

We say that the pacing for a link is in equilibrium if:

W, = W, for some integer k and for i sufficiently large (3.4)

where W, is the waiting time at A for the ith packet from E.

This definition implies the waiting ime will repeat with a period k. When k = |, we say the
system is at an equilibrium point, otherwise, we say the system is in an equilibrium orbit with
period k.

A special case of equilibrium is an equilibrium point or orbit that cannot be reached under
any initial conditions other than the equilibrium point or orbit. We call this condition unstabie
equilibrium .

We now address four questions conceming equilibrium:

I. Does the system always reach equilibrium?
2. What are the equilibrium values?
3. Are there any unstable equilibrium values?

4. What are the most probable equilibrium values?

3.3 Difference-Equation Modeling

To answer these questions, we model our system as a set of difference equations. Appendix A
gives the derivation of these equations. The equations are:
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f

S
i

20+ W, (3.5)
[ 3FD;+1D; if D, > FD;

FDi = l %‘FD.- + %Di otherwise (3.6)
13 ,
P = mD‘ +3D, (3.7)
IW,'+144.4—P‘ 1fP,<W'+844
W = 844K, +60+W, — P, if P, <W,;+844K,+60 3.8)
1 0 otherwise
K, = (P -W,/844 (3.9)

Where:
D, is the amount of time for A to forward the :th E ~- H packet.
FD; is the smoothed average of all D; for j <:
P, is the intertransmission time at caused by pacing between packets i and i + 1
W, is the amount of time that the ith E -~ H packet waits to be sent at A

K, is the instantaneous ratio of the throughput on A ~ D to the throughput on E -- H

3.4 Theoretical Equilibrium Points

Recall that an equilibrium point occurs when W, = W,,,. Therefore, there an equilibrium point
occurs when 60 + 84.4K = pacing. The following table displays all of the possible equilibtrium
points which we obtain by solving for W, given a value for K.

K | Wair time at A | Pacing at E
11992 144.4
2 12140 228.8
3 |31.16 313.2
4 |39.79 397.6
5 | 47.63 482.0
6 | 54.84 566.4

Note that K cannot exceed six because W has a maximum value of 60 msec by above
equations. Therefore, the above table is exhaustive. This analysis shows that it is possible to
reach an equilibrium point where one path has six times the network share of another path.

7
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3.5 Difference-Equation Computations

Although the above table gives the only equilibrium points, we do not know if any are reachable.
The system may never reach equilibrium, or it may reach an equilibrium orbit.

We would like to examine the set of difference equations to determine if the system stabilizes.
However, this is too difficult given their compiexity. Instead, we chose to evaluate this system
of difference equations using a Monte-Carlo simuladon and observe the response. We evaluated
the system with several runs, using several sets of initial values for W, and D,.

We made the following observations:

. The system always reached an equilibtrium point. The equilibrium points depended on
the values for W, and D.

tJ

. The most common equilibrium point was the one that assigns one path three times the
share of the other.

3. When we set Dy to the initial value assigned by SURAP, both paths usually stabilized to
equal traffic shares.

4. The equilibrium f:oint at K = 4 is unstable. All other equilibrium points are stable.

We also changed the algorithm so that the smoothing functions never varied. That is.

3
1
This is a slight variation of equation 3.6. We changed the algorithm to see how generalizable
the results are. Specifically, we wondered if an equilibrium point could always be reached, and
if there were special properties to the K = 4 case to make things unstable
This model also gave interesting results:

FD ., =-FD, + thDi for all cases (3.10)

1. We observed stability for all K.

2. We observed an equilibrium orbit. Specifically, we observed:

P =P (3.11)

The model shows that the network should reach equilibrium and that it is common for the
network to stabilize to a point where one path has three times the traffic share of the other. Our
SURAP3 simulations demonstrate this as well.
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4. Summary and Conclusions

This example shows how quadratic backoff can give unfair traffic shares. Our simulations show
that this network will typically stabilize at a point where one path has three times the traffic
share of the other. Furthermore, it is theoretically possible to stabilize where one path has six
times the share of the other.

Our steady-state analysis can be generalized to other similar topologies. Specifically, this
behavior will occur in topologies with routes whose second node is the end-to-end source of
another route.

Linear backoff eliminates these problems. Quadratic backoff has been replaced by linear
backoff in SURAP.

This example is interesting because it provides insight into the dynamics of SURAP. Specifi-
cally, it demonstrates instances of synchronization that may continually and systematically assign
certain paths a very small traffic share. This makes it difficult for some nodes to communicate
and therefore impacts the network's survivability.
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Appendix A. Difference-Equation Derivations

To derive the set of difference equations for the system, we evaluate W, given W, and P,.
Here, P, is the pacing delay between packets : and : + 1 sent from E to A.

L L / L 1 L .
+ + 7 /T T T i
to t t- s ta

Figure A.1: Time Line

Figure A describes events that occur at A: These are:
to: Packet i from E arrives at A from E.-
ti: A forwards packet number i.
t»: A forwards the last A ~- D packet.
ti: Packet number i + 1 amves at A from E.
ty: A forwards packetri + 1.

We now describe equations that relate ¢, through ¢,.
First:
ty=to+ W,. (A.1)
by the definition of W',.

Let K, be the number of A -~ H packets that A forwards between forwarding packet i and
packet i + 1. In other words, K, is the ratio of the throughput of the A ~ D path to the
throughput of the E ~- H path. (Note that fairness queueing insures that K, > 0.)

This means:

tr=t; + K, P(A — B for A~ D packets) (A.2)
Which, by substituting equation 3.2, reduces to:
t2=t, +84.4K, (A.3)
Note that:
ty=to+ P, (A.4)

10
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by the definition of pacing and that:
t4=t3+W",,| (AS)

by the defimtion of W.
We now wish to evaluate W,,,. To do so, we consider three cases:

Case 1: Packet i+1 arrives before A sends a single A ~ D packet.
Case 2: Packet i+1 arrives before its pacing timer at A expires.

Case 3: Packet i+1 arrives after its pacing timer at A expires.

Case 1: Packet i+1 arrives hefore A sends a single A --- D packet.  For this case, fairness
queueing makes packet i + | wait for A to send exactly one A ~ D packet.
The conditions for this case mean that:

ti <ty + P(A — B for A ~- D packets) = ¢, + 84.4. tA.6)
Combining this with equations A.1, A.4, and A.5 gives:
P < W,+844 (A.7)
The results for this case mean that:

ts ty + P(A — B for A ~ D packets)
+P(A — B for E ~ H packets) (A.8)

= H+1444 (A.9)

Combining this with equations A.l. A.4. and A.S gives:

Wa=W +1444 - P, (A.10)

Case 2: Packet i+1 arrives before its pacing timer at A expires The conditions of this case
mean that:

t; < pacing expiration tme (A.1D)

where
pacing expiration time = ¢, + P(A — B for E ~ H packets) = ¢, + 60 (A.12)

Combining this with equations A.1, A.4, and A.5 gives:

P, <W,+844K,+60 (A.13)

11
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Case 3: Packet i+l arrives after its pacing timer at A expires For this case,

ts = pacing expiration time = ¢, + 60 (A.14)

And therefore,
W, =844K, +60+W, - P, (A.15)

Recall that K, is the : .mber of A ~- D packets that A sends between forwarding packets i
and i + 1. Therefore. K, is the largest integer such that:

t+ K,P(A — B for A~ D packets) < t; (A.16)
Substituting equations A.1, A4, and 3.2 gives:

K, = (P -W,) 844 ' (A.17)
The conditions of this case mean:
t3 > pacing expiration time = ¢» + 60 (A.18)

Combining this with equations A.1, A.4, and A.5 gives:

P, > W, +84.4K; +60 (A.19)
Once the pacing timer has expired, packet i + 1 is forwarded as soon as it arrives at A, and
SO:
Wia=0 (A.20)
12
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